Самые горячие звезды. 1.на прямую измерить температуру звезд невозможно. однако с температурой звезды тесно связан ее цвет. в астрономии применяют абсолютную. — презентация

Сириус (α Большого Пса)

Знаменитая «собачья звезда» (не зря Дж.Роулинг назвала так своего героя, превращавшегося в пса), появление которой на небе означало для древних школяров начало каникул (это слово и означает «собачьи дни») – одна из самых близких к Солнечной системе и потому отлично видимая почти из любой точки Земли, кроме Крайнего Севера.

Сейчас считается, что Сириус – двойная звезда. Сириус A вдвое крупнее Солнца, а Сириус B – меньше. Хотя миллионы лет назад, видимо, было наоборот.

Многие народы оставили различные легенды, связанные с этой звездой. Египтяне считали Сириус звездой Исиды, греки – взятой на небо собакой Ориона, римляне звали его Каникула («маленькая собачка»), по-древнерусски эту звезду звали Псица.

Древние описывали Сириус как красную звезду, тогда как мы наблюдаем голубоватое свечение. Ученые могут объяснить это только предположением, что все древние описания были составлены людьми, видевшими Сириус невысоко над горизонтом, когда цвет его искажался парами воды.

Как бы то ни было, сейчас Сириус – самая яркая звезда нашего небосклона, которую можно увидеть невооруженным глазом даже днем!

Она часто мерцает, так как её яркий свет может проникать через нижние слои атмосферы лучше, чем свет других звёзд. Она всего в 8,6 световых годах от нас, но это звезда класса А, в два раза массивнее и в 25 раз ярче Солнца.

Поиск звезды Сириус на небе

Наиболее удачное время для наблюдений за Сириусом – зима (для наблюдателей северного полушария), так как Песья звезда достаточно рано появляется в вечернем небе. Чтобы найти Сириус, используйте созвездие Ориона в качестве ориентира, а точнее его три звезды из пояса. Прочертите линию от левой крайней звезды пояса Ориона с наклоном в 20 градусов в направлении юго-востока.

В качестве помощника можете использовать собственный кулак, который на расстоянии вытянутой руки закрывает около 10 градусов неба, поэтому вам понадобится приблизительно две ширины вашего кулака.

Секреты стройности от Кейт Бекинсейл

  • Табу на сахар и мучные изделия – актриса практически не ест такие вредные продукты, зато в ее рационе много овощей и фруктов. Завтрак – обязательно. К тому же Кейт Бекинсейл питается часто, но порции размером с ладонь.
  • Спорт – трижды в неделю не более. Это позволяет поддерживать тело в тонусе и не набрать лишний вес.
  • Макси для лица – в особенности перед сном или после бессонной ночи. Увлажнение – прежде всего.
  • Массаж – излюбленный релаксирующий процесс для артистки, который к тому же поддерживает в отличной форме все тело. Дополнительно – контрастный душ каждое утро.

На фото голливудская актриса Сандра Буллок

54-летняя актриса, режиссер, продюсер и сценарист Сандра Буллок родилась в семье учителя пения и оперной певицы. В детстве у артистки было множество увлечений: балет, музыкальная школа, театр, хор, группа поддержки. Она хотела стать стюардессой или моделью, но выбрала все-таки актерское мастерство. Сейчас на счету у звезды несколько сотен фильмов, собственная продюсерская компания и номинация на премию «Золотой глобус» и «Оскар».

Звездные остатки

От массы в общем случае зависит и судьба звезды – то, как она окончит свой жизненный путь. Маломассивные звезды типа Солнца, исчерпав запас водорода, теряют внешние слои, после чего от светила остается вырожденное ядро, в котором уже не может идти термоядерный синтез, – белый карлик. Наружный тонкий слой молодого белого карлика обычно имеет температуру до 200 000 K, а глубже располагается изотермическое ядро, нагретое до десятков миллионов градусов. Дальнейшая эволюция карлика заключается к его постепенному остыванию.

Гигантские звезды ждет иная судьба – взрыв сверхновой, сопровождающийся повышением температуры уже до значений порядка 1011 K. В ходе взрыва становится возможен нуклеосинтез тяжелых элементов. Одним из результатов подобного феномена является нейтронная звезда – очень компактный, сверхплотный, со сложной структурой остаток погибшей звезды. При рождении он столь же горяч – до сотен миллиардов градусов, однако стремительно остывает за счет интенсивного излучения нейтрино. Но, как мы увидим далее, даже новорожденная нейтронная звезда – не то место, где температура – самая высокая во Вселенной.

Самые горячие звезды

Из диаграммы явствует, что наиболее горячими являются голубые гиганты, сверхгиганты и гипергиганты. Это чрезвычайно массивные, яркие и короткоживущие звезды. Термоядерные реакции в их недрах протекают очень интенсивно, порождая чудовищную светимость и высочайшие температуры. Такие звезды относятся к классам B и O либо к особому классу W (отличается широкими эмиссионными линиями в спектре).

Например, Эта Большой Медведицы (находится на «конце ручки» ковша) при массе, в 6 раз превышающей солнечную, светит в 700 раз мощнее и имеет поверхностную температуру около 22 000 K. У Дзеты Ориона – звезды Альнитак, – которая массивнее Солнца в 28 раз, внешние слои нагреты до 33 500 K. А температура гипергиганта с наивысшей известной массой и светимостью (как минимум в 8,7 миллионов раз мощнее нашего Солнца) – R136a1 в Большом Магеллановом облаке – оценена в 53 000 K.

Однако фотосферы звезд, как бы сильно разогреты они ни были, не дадут нам представления о самой высокой температуре во Вселенной. В поисках более жарких областей нужно заглянуть в недра звезд.

Вглубь звезды

Но как такая ничтожная часть состава звезды может серьезно изменить ее функционирование? Для человека, в среднем состоящего на 70% из воды, потеря 2% жидкости не страшна — это всего лишь ощущается как сильная жажда и не приводит к необратимым изменениям в организме. Но Вселенная очень чуткая даже к самым малым переменам — будь 50-я часть состава нашего Солнца хоть капельку иной, жизнь в Солнечной системе могла и не образоваться.

Как это работает? Для начала вспомним одно из главных последствий гравитационных взаимодействий, упоминаемое повсеместно в астрономии — тяжелое стремится к центру. Любая планета служит наглядной моделью этого принципа: самые тяжелые элементы, вроде железа, располагаются в ядре, когда более легкие — снаружи.

То же самое происходит во время образования звезды из рассеянного вещества. В условном стандарте строения звезды гелий образует ядро светила, а из водорода собирается окружающая оболочка. Когда масса гелия переваливает за критическую точку, гравитационные силы сжимают ядро с такой силой, что в прослойках между гелием и водородом в ядре начинается термоядерная реакция.

Строение разных звезд

Именно тогда звезда и зажигается — еще совсем молодая, окутанная водородными облаками, которые со временем улягутся на ее поверхности. Свечение играет важную роль в существовании звезды — именно частицы, пытающиеся вырваться из ядра после термоядерной реакции, удерживают светило от моментального сжатия в нейтронную звезду или черную дыру. Также имеет силу обычная конвекция, перемещение вещества под воздействием температуры — ионизированные накалом у ядра, атомы водорода поднимаются в верхние слои звезды, перемешивая тем самым материю в нем.

Так все же, при чем тут 2% тяжелых веществ в составе звезды? Дело в том, что любой элемент тяжелее гелия — будь то углерод, кислород или металлы — неминуемо окажется в самом центре ядра. Они опускают планку массы, по достижению которой зажигается термоядерная реакция — и чем тяжелее вещества в центре, тем быстрее зажигается ядро. Однако при этом оно будет излучать меньше энергии — размеры эпицентра горения водорода будут скромнее, чем если бы ядро звезды состояло из чистого гелия.

Голубые карлики, потомки красных карликов

Красные карлики (звезды спектрального класса M) – самые многочисленные во Вселенной. Так, почти все звезды, находящиеся в непосредственной близости от Солнца – красные карлики (из 50 самых ближних к нам звезд Солнце является 4-й по размеру). Интерес к красным карликам значительно повысился именно в последние годы, отчасти потому, что именно в системе очень тусклого и холодного красного карлика TRAPPIST-1 находится примерно семь компактно расположенных планет, как минимум три из которых должны располагаться в зоне обитаемости этой звезды.

Красные карлики завершают Главную Последовательность. Их эволюцию в настоящее время можно только моделировать, но расчеты Питера Боденгеймера из Калифорнийского университета в Беркли показывают, что срок жизни красных карликов может составлять несколько триллионов лет. При этом на протяжении всей жизни красный карлик светит ровно и стабильно, поскольку во всем объеме такой звезды происходит конвекция – перемешивание вещества. 

Конвекция в красном карлике может продолжаться на протяжении почти 6 триллионов лет, поэтому звезда успевает «выработать» почти весь свой водород. Боденгеймер предполагает, что самые мелкие красные карлики в конце жизни не превратятся в красные гиганты, а, оставаясь физически компактными, вновь начнут разогреваться, став голубыми карликами.

Температура такой звезды превысит солнечную, а светимость все равно останется очень низкой. Для превращения в красный гигант масса красного карлика должна составлять не менее 0,25 M (массы Солнца). Более мелкие звезды ждет превращение в голубые карлики. При этом самые мелкие из известных красных карликов имеют массу около 0,08 M и могут гореть до 12 триллионов лет.

По-видимому, примерно через 800 миллиардов лет во Вселенной не останется звезд крупнее 0,3 M, и большинство из них окажется голубыми карликами. При этом жизнь таких звезд будет дополнительно продлеваться за счет нарастания их металличности. Металл сдерживает потерю звездной энергии, играя роль своеобразной заслонки, тем самым еще немного продлевая жизнь звезды. Вероятно, к окончанию первого триллиона лет все сохранившиеся к тому времени галактики будут иметь голубоватый оттенок, так как окажутся наполнены голубыми карликами.

Термоядерные реакции

Звезду можно представить как гигантский ядерный очаг. Термоядерная реакция внутри нее превращает водород в гелий в ходе слияния (синтеза) ядер водорода, благодаря чему рождается столь необходимая для звезды энергия. Атомные ядра водорода — протоны — объединяются в ядра атомов гелия с двумя нейтронами. Однако протоны — электрически заряженные элементарные частицы, которые при приближении отталкиваются друг от друга. Так что из двух протонов новое ядро не построишь. Нужен какой-то элемент, причем более крепкий, чем силы электрического отталкивания. Эту роль в атомных ядрах играет другая ядерная частица — нейтрон.

Ядро обычного атома водорода имеет всего один протон. Но у его разновидностей — дейтерия и трития — в ядрах кроме одного протона имеется и нейтрон: у дейтерия один, а у трития два. Оба они также присутствуют в недрах звезд.

Атом дейтерия соединяется с атомом трития, образуя атом гелия и свободный нейтрон. Именно из гелия и формируется ядро звезды. В нем также содержатся более тяжелые химические элементы (например, железо), которые были захвачены из «материнской» туманности или же образуются во время термоядерных реакций. В результате этого процесса высвобождается огромное количество энергии.

Скорость протекания ядерного синтеза пропорциональна массе звезды в четвертой степени. Это значит, что если масса одной звезды больше массы второй в два раза, то на первой ядерное топливо горит в 16 раз (2 в четвертой степени) раз быстрее.

Следовательно, массивные звезды сгорают быстрее. Самые тяжелые сжигают весь водород за несколько сотен тысяч лет, а легкие красные звезды могут «тлеть» несколько миллиардов лет.

Если говорить о возрасте, то молодыми считаются звезды очень большой массы и очень высокой светимости, то есть те, которые излучают энергии во много раз больше, чем Солнце. Они гораздо моложе нашего светила, потому что столь интенсивно теряют энергию, что в состоянии существовать только сравнительно короткое по астрономическим масштабам время. Недавно возникшие звезды — это, прежде всего, гигантские горячие звезды голубоватого цвета, так называемые голубые сверхгиганты.

  • Звездные карты: как найти объект на небе
  • Красные гиганты, белые карлики, пульсары
  • Нейтронные звезды, или пульсары

Поделиться ссылкой

Какие бывают звезды?

Звезды различаются по температуре, возрасту, массе, размерам, плотности, светимости и химическому составу.

По температуре различают красные, желтые, белые, голубые. Среди них самые холодные красные: температура на поверхности такой звезды составляет не более 3000°С. Желтые звезды — к ним относится и наше Солнце — имеют температуру около 6000°С; белые «разогреты» от 10 000 до 20 000°С; голубоватые же звезды — самые горячие — раскалены более чем до 30 000°С (иногда до 100 000°С). Но это температура поверхности звезд. Внутри этих светил еще жарче — до 20 млн °С.

Белый карлик — звезда, имеющая большую массу (порядка солнечной) и малый радиус, близкий к радиусу Земли. Зато плотность белого карлика огромна: масса 1 см3 его вещества равняется 29 т

В зависимости от размеров звезды величают гигантами (самые большие) и карликами (наименьшие). Диаметр так называемых белых карликов может быть в 100 с лишним раз меньше диаметра Солнца, при этом масса таких звезд примерно равна солнечной. По численности такие карлики составляют от 3 до 10% звездного «населения» нашей галактики.

Чем больше звезды, тем реже они встречаются в пространстве. Особенно редки гиганты. Самыми крупными являются красные гиганты. К примеру, диаметр красной звезды Бетельгейзе из созвездия Ориона более чем в 300 раз превосходит диаметр Солнца. А красный Антарес в созвездии Скорпиона по диаметру в 450 раз больше нашего светила и даже превышает орбиту Марса.

Сравнение размеров звезд и планет

Одной из самых больших ныне известных звезд является красный сверхгигант Мю Цефея. Внутри этой звезды могли бы уместиться орбиты планет Солнечной системы вплоть до Юпитера. Мю Цефея, также известная как «гранатовая звезда Гершеля», является красным сверхгигантом и находится в созвездии Цефея.

Около половины звезд являются одиночными (как Солнце), остальные образуют двойные (например, Сириус), тройные и более сложные системы. Чем больше звезд в системе, тем реже она встречается. Известны звездные системы из семи членов, но более сложные пока не обнаружены.

Жарче всех

Следует иметь в виду, что квазар 3С 273 мы видим таким, каким он был около 2,5 миллиарда лет назад. Так что, учитывая, что, чем дальше мы заглядываем в космос, тем более отдаленные эпохи прошлого наблюдаем, в поисках самого горячего объекта мы вправе окинуть взглядом Вселенную не только в пространстве, но и во времени.

Если вернуться к самому моменту ее рождения — приблизительно 13,77 миллиарда лет назад, наблюдать который невозможно, — мы обнаружим совершенно экзотическую Вселенную, при описании которой космология подходит к пределу своих теоретических возможностей, связанному с границами применимости современных физических теорий.

Описание Вселенной становится возможным, начиная с возраста, соответствующего планковскому времени 10-43 секунд. Самый горячий объект в эту эпоху – сама наша Вселенная, с планковской температурой 1,4×1032 K. И это, согласно современной модели ее рождения и эволюции, максимальная температура во Вселенной из всех когда-либо достигавшихся и возможных.

История наблюдений за звездами

Сейчас можно легко купить телескоп и наблюдать на ночным небом или воспользоваться телескопами онлайн на нашем сайте. С древних времен звезды на небе играли важную роль во многих культурах. Они отметились не только в мифах и религиозных историях, но и послужили первыми навигационными инструментами. Именно поэтому астрономия считается одной из древнейших наук. Появление телескопов и открытие законов движения и гравитации в 17 веке помогли понять, что все звезды напоминают наше Солнце, а значит подчиняются тем же физическим законам.

Фотография умирающей звезды. Изображение получено космическим телескопом Хаббл

Изобретение фотографии и спектроскопии в 19 веке (исследование длин волн света, исходящих от объектов) позволили проникнуть в звездный состав и принципы движения (создание астрофизики). Первый радиотелескоп появился в 1937 году. С его помощью можно было отыскать невидимое звездное излучение. А в 1990 году удалось запустить первый космический телескоп Хаббл, способный получить наиболее глубокий и детализированный взгляд на Вселенную (качественные фото Хаббла для различных небесных тел можно найти на нашем сайте).

Гипергиганты

Гипергигант VY Большого Пса выбрасывает огромное количество газа во время своей вспышкиЕсли наибольшую звезду невозможно найти практически, может, стоит её разработать теоретически? Т.е., найти некий предел, после которого существование звезды уже не может быть звездой. Однако даже здесь современная наука сталкивается с проблемой. Современная теоретическая модель эволюции и физики звёзд не объясняют многого из того, что существует фактически и наблюдается в телескопы. Примером тому служат гипергиганты.

Астрономам не раз приходилось поднимать планку предела звёздной массы. Такой предел впервые ввёл в 1924 году английский астрофизик Артур Эддингтон. Получив кубическую зависимость светимости звёзд от их массы.

Эддингтон понял, что звезда не может накапливать массу бесконечно. Яркость возрастает быстрее массы, и это рано или поздно приведёт к нарушению гидростатического равновесия. Световое давление нарастающей яркости будет буквально сдувать внешние слои звезды.

Предел, рассчитанный Эддингтоном, составлял 65 солнечных масс. В последствие астрофизики уточняли его расчёты, добавляя в них неучтённые компоненты и применяя мощные компьютеры. Так современный теоретический предел массы звезд составляет 150 солнечных масс.

В представлении художника R136a1 является самой массивной из известных ныне звёзд. Кроме неё значительными массами обладает ещё несколько звёзд, число которых в нашей галактике можно пересчитать по пальцам. Такие звёзды назвали гипергигантами. Заметим, что R136a1 значительно меньше звёзд, которые, казалось бы, должны быть ниже её по классу – к примеру, сверхгиганта UY Щита. Всё потому что гипергигантами называет не самые крупные, а именно самые массивные звёзды. Для таких звёзд создали отдельный класс на диаграмме спектр-светимости (O), расположенных выше класса сверхгигантов (Ia). Точной начальной планки массы гипергиганта не установлено, но, как правило, их масса превышает 100 солнечных. Ни одна из крупнейших звёзд «большой десятки» не дотягивает до этих пределов.

Видео: Самые большие звезды во Вселенной

https://youtube.com/watch?v=_LKEF2PiIcE

http://o-kosmose.net/zvezdyi-vselennoi/

https://basetop.ru/samaya-bolshaya-zvezda-vo-vselennoy-ndash-uy-shhita/

http://pooha.net/nature/space/4-stars

http://spacegid.com/samaya-bolshaya-zvezda-vo-vselennoy.html

Райан Гослинг

Когда пару лет назад журнал People не признал Райана Гослинга самым сексуальным мужчиной из ныне живущих, перед офисом журнала прошла настоящая акция протеста. Бог знает, что с нами будет теперь, когда ты поставил четвертую звезду Диска. Но одно можно сказать наверняка: любящий собак, противник грабителей, вдохновляющий мемами Гослинг будет только криво ухмыляться и продолжать хладнокровно относиться ко всему безумию, планируя свою следующую потрясающую роль.

Самая сексуальная роль: Все еще Дневник , который кажется ему романтичным, стойким, сильным, но безмолвным и нежным под дождем.

Цвета ярких звезд

А как насчет ярких звезд?

Давайте посмотрим на созвездие Ориона, а вернее, на две его ярчайшие звезды, Ригель и Бетельгейзе. (Орион — центральное созвездие зимнего неба. Наблюдается по вечерам на юге с конца ноября по март.)

Звезда Бетельгейзе выделяется среди других в созвездии Ориона своим красноватым оттенком. Фото: Bill Dickinson/APOD

Даже беглого взгляда хватит, чтобы заметить красный цвет Бетельгейзе и голубовато-белый цвет Ригеля. Это не кажущееся явление — звезды действительно имеют разные цвета. Разница в цвете определяется только температурой на поверхностях этих звезд. Белые звезды горячее желтых, а желтые, в свою очередь, горячее оранжевых. Самые горячие звезды голубовато-белого цвета, а самые холодные — красные. Таким образом, Ригель намного горячее Бетельгейзе.

Том Хиддлстон

Высокий, красноречивый и невероятно обаятельный, Хиддлстон сейчас настолько крут, что – в этом голосовании – он в одиночку победил каждого Мстителя и Человека из стали. Он также кажется веселым и философски настроенным человеком, который изо всех сил старается изо всех сил для своих поклонников, своих коллег, а в последнее время – для ЮНИСЕФ. Может быть, плохие парни действительно веселятся больше.

Самая сексуальная роль: Да, конечно, Локи, превращающий братоубийственную тоску в бешеную жажду миллионов зрителей по всему миру. Кроме того, мы неравнодушны к его Ф. Скотту Фицджеральду в «Полночь в Париже».

Квазизвезды

Только не думайте, что речь идет о квазарах. Это теоретическая звездная разновидность, способная проживать исключительно в раннем космическом пространстве. По способу существования звезда выбирает каннибализм. Формируется из звезд III поколения. В ее случае внешний слой ядерного материала поглотил бы энергетический взрыв от коллапса и остался на точке, не покидая сверхновую. Внешняя оболочка сохраняется, а внутри формируется черная дыра. Такой объект отличается невероятно ярким свечением, а по массивности в 7000 раз превосходит Солнце. Но оболочка растерялась бы через миллион лет, а черная дыра осталась.

Роберт Паттинсон

Бывший и бывший Р. Патц, возможно, ворвался на сцену как мечтательный вампир Эдвард, но он не из тех, кто почивает на лаврах хорошенького мальчика. То, что поддерживает привязанность фанатов (нам нравится думать), – это то, как он постоянно заставляет себя выполнять все более жесткие и жесткие роли, и его способность смеяться – сильно – над идеей, что его идеальные черты лица и великолепные волосы в любом случае делают его секс-символом.

Самая сексуальная роль: Давайте будем спорить и предложить «Воды слонам», где он по-прежнему мечтательный и джентльменский, но не крадется в спальни девочек-подростков, пока они спят.

Какие еще бывают светила по цвету

С одной стороны, спектр обладает максимумом в определенном цвете. С другой стороны, при наблюдении это не всегда заметно. Нам кажется, что свет белый, иногда даже красноватый. Конечно, детальный анализ распределения интенсивности электромагнитного излучения показывает реальные свойства небесных объектов. Хотя сейчас многие телескопы также позволяют их различить.

Более того, мы научились распознавать другие виды излучений. Что делает возможным выяснить многие особенности космических тел.

Так, установили, что нейтронные светила излучают рентгеновские лучи. Кроме того, существуют зелёные и фиолетовые тела. Которые мы воспринимаем как белые и голубые соответственно. Правда, их невозможно определить без специальных приборов. Потому что они могут быть лишь в очень тесных двойных системах.

Вдобавок ко всему, цвет звезд, как и все её характеристики, может меняться под влиянием друг друга, внешней среды и стадии эволюции. То есть, все происходящие с ними процессы, так или иначе, влияют и изменяют его.Помимо всего, визуальное различие тел зависит от чувствительности глаз человека, а также индивидуального восприятия.

Нейтронная звезда

Итак, мы узнали какого цвета звезды на небе, причины их различия. Надеюсь, теперь вы сможете ответить на вопрос: какого цвета, например, звезда Бетельгейзе?

При наблюдениях не стоит забывать, что сияющая одним светом звезда, скорее всего, в действительности обладает иным спектром.

Ли Пейс

Пейс, возможно, наименее известный человек в этом списке, несмотря на то, что ему нравится «Толкать маргаритки» и воровать сцены в роли Гаррета в финале «Сумерек» (правда, не так уж и сложно, когда у вас хорошие волосы, а Каллены застряли в этих париках). Теперь он в «Хоббите», ожидайте, что он чертовски быстро станет звездным – если, конечно, он сможет преодолеть свой собственный белокурый парик испуга.

Самая сексуальная роль: есть пианист в «Мисс Петтигрю», раненый каскадер в «Падении» или вышеупомянутый вампир-вегетарианец; сделайте ваш выбор. Только, пожалуйста, только не Фернандо Вуд из Линкольна.

Жизненный цикл звезд Вселенной

Звезда во Вселенной начинает свою жизнь в виде облака пыли и газа, называемого туманностью. Гравитация соседней или взрывная волна сверхновой звезды могут заставить туманность сжиматься. Элементы газового облака объединяются в плотную область, называемую протозвездой. В результате последующего сжатия протозвезда нагревается. В итоге, она достигает критической массы, и начинается ядерный процесс; постепенно звезда проходит все фазы своего существование. Первый (ядерный) этап жизни звезды – самый долгий и стабильный.

Продолжительность жизни звезды зависит от её размера. Крупные звёзды расходуют своё жизненное топливо быстрее. Их жизненный цикл может длиться не более нескольких сотен тысяч лет. А вот маленькие звёзды живут многие миллиарды лет, так как тратят свою энергию медленнее.

Но, как бы то ни было, рано или поздно, звёздное топливо кончается, и тогда маленькая звезда превращается в красного гиганта, а крупная звезда – в красного супергиганта. Эта фаза продлиться до тех пор, пока топливо не израсходуется окончательно. В этот критический момент внутреннее давление ядерной реакции ослабнет и больше не сможет уравновешивать силу гравитации, и, в результате, произойдет коллапс звезды. Затем небольшие звёзды Вселенной, как правило, перевоплощаются в планетарную туманность с ярким сияющим ядром, называемым белым карликом. Со временем и он остывает, превращаясь в тёмный сгусток материи – чёрного карлика.

У больших звезд всё происходит немного иначе. Во время коллапса они высвобождают невероятное количество энергии, и мощный взрыв рождает сверхновую звезду. Если её величина составляет  1.4 величины Солнца, тогда, к сожалению, ядро не сможет поддерживать своё существование и, после очередного коллапса, сверхновая звезда станет нейтронной. Внутренняя материя звезды сожмётся до такой степени, что атомы образуют плотную оболочку, состоящую из нейтронов. Если же звёздная величина в три раза больше солнечной, то коллапс её просто уничтожит, сотрёт с лица Вселенной.

Туманность, оставшаяся после звезды Вселенной, может расширяться в течение миллионов лет. В конце концов, на неё подействует гравитация соседней или взрывная волна сверхновой звезды и всё повторится снова. Этот процесс будет происходить по всей Вселенной – бесконечный цикл жизни, смерти и возрождения.

Результатом этой звёздной эволюции является образование тяжёлых элементов, необходимых для жизни. Наша солнечная система произошла из второго или третьего поколения туманности, и благодаря этому на Земле и других планетах есть тяжёлые элементы. А это значит, что в каждом из нас есть частички звёзд.

Звезда-алмаз PSR J2222-0137

Уникальнейшая с точки зрения состава и самая холодная звезда PSR J2222-0137 расположена на расстоянии в 900 световых лет от земли. Эта звезда является частью двойной звездной системы, она вращается вместе с пульсаром вокруг общего центра.

Звезда уже пережила свой век, и состоит из кристаллизованного углерода, который под действием гравитационных сил превратился в один большой алмаз. Представьте, такой вот гигантский космический алмаз размером с Землю путешествует по просторам Вселенной. Находится белый карлик в созвездии Водолея.

Подобная Солнцу в период существования планета-алмаз, закончила свой жизненный цикл, достигнув возраста 11 млрд лет. На сегодняшний день это самая холодная звезда в Космосе, известная научному сообществу.

Из-за слабого свечения её было трудно обнаружить, и это событие произошло совсем недавно, в 2013 году. Ученым удалось даже просчитать температуру потухшей звезды — примерно 2 700 градусов по Цельсию.

Теоретически астрономы просчитали наличие подобных небесных тел в Космосе, но их открытие затруднено из-за очень низкой яркости.

А о том, какие ещё удивительные вещи учёные нашли в космосе, на most-beauty.ru есть очень интересная статья.

11

Список звёзд

Учёные составили рейтинг небесных тел по блеску. В список входят газовые шары белого, желтого и других оттенков. Их можно увидеть в южном и северном полушариях с помощью спутника, телескопа либо другого астрономического прибора. На десятой позиции находится Бетельгейзе.

Греки видели в созвездии Ориона одноименного охотника, который погиб из-за Артемиды. Если Солнце заменить Бетельгейзе, при минимальных параметрах последняя заполняет орбиту Марса. Звёздное тело светит ярче Солнца, минимальное значение светимости превышает аналогичный показатель Солнца в 80 тысяч раз. Расстояние между телами составляет 640 световых лет.

На восьмой позиции находится наиболее яркий шар созвездия Малый Пес — Процион. Древние греки отмечали, что тело восходит до Сириуса, предвещая разлив Нила. Сириус и Процион считаются двойными небесными телами. Расстояние от последнего до Земли составляет 11 световых лет.

Белые и голубые гиганты

На седьмом месте находится бело-голубой мега гигант Ригель с блеском 0,12. Он считается самой мощной из всех ярких тел. В его системе находятся 3 звезды. На следующей позиции находится Капелла. Название в переводе с латыни — «козочка». Римляне видели в теле козу Амальтею, которая кормила Зевса-Юпитера. Часть ее головы превратилась в рог изобилия. Жёлтый гигант имеет видимую величину в 0,08.

Капелла считается переменной, поэтому называется двойной. На пятой строчке рейтинга находится Вега либо нуль из созвездия Лиры. На протяжении нескольких лет астрономы принимали тело за точку отсчёта по шкале звездных величины. Современные ученые присваивают им степень блеска в 0,03. Некоторые астрономы считают, что Вега изучена лучше остальных небесных тел.

Для совершения полного оборота потребуется 12,5 часов. В её названии присутствует слог wagi — «падающий гриф». Созвездие Лиры воспринимается арабами в качестве хищной птицы. На четвёртой позиции расположено тело Арктур со звездной величиной 0,05. Оно является стражем медведицы.

Морфологическая загадка расшифровывается следующим образом: Арктур — сын Зевса. Аркад, который отправился на небо по поручению отца с целью охраны своей матери. Нимфа Каллисто превратилась в Большую Медведицу. Красное тело Арктур близко по косметическим меркам к Земле. Его можно увидеть на небе, проживая в России, на протяжении года.

Первые позиции

На третьей позиции размещена Проксима Центавра. Её блеск равняется 0,27. Центавр является кентавром, только пришедшим из латыни. Вторая по яркости звезда — Канопус.

Альфа Киля считается путеводным телом для иных космических кораблей. Бело-жёлтая звезда имеет блеск 0,72. Она хорошо видна с территории южных Афин. Светимость равняется 14 000 солнечных лет. Учитывая данный показатель, звезда обладает максимальной светимостью, в отличие от остальных тел, расположенных в радиусе 700 световых лет от Солнца.

Альфа Большого Пса с древности имела второе название «звезда пёса». Согласно греческой мифологии, Сириусом была собака либо охотник Ориона. Римляне называли тело «маленькой собачкой». Сириус появляется с лучами утренней зари в июле. Римляне это воспринимали как наступление жары, каникул. Из этого словосочетания появилась русская идиома «собачий холод».

На протяжении существования человечества люди смогли впервые объединить небесные тела в группы более 15000 лет назад. В первых работах описано около 48 созвездий. Все, кроме Арго, можно увидеть на небе. Он разделился на 4 маленьких шара: Корма, Киль, Парус, Компас.

Другие новые созвездия:

  • Павлин;
  • Телескоп;
  • Индеец.

Последнее тело было открыто в 1763 году. Ученые нашли 88 звёздных групп, из которых 28 находятся в северном полушарии, а 45 — в южном. Увидеть за одну ночь 28 тел нельзя. Их появление разнообразно: некоторые сияют зимой, а другие — летом. Чтобы увидеть небесные красоты, используется специальное оборудование с разными диапазонами электромагнитного спектра: оптические, радиотелескопы, рентгеновские и гамма.

Оптические приборы применяются в астрономии, чтобы наблюдать за светилами космоса. С помощью телескопа можно отслеживать удалённые объекты, их движение. Первый простой линзовый прибор был создан во времена Леонардо Да Винчи. Чтобы проводить исследования, связанные с космическими объектами, используются радиотелескопы. Их главные элементы представлены в виде радиометра и антенны. Первая деталь считается чувствительным радиоприёмником, который легко перестраивается по частоте.