Какое излучение обладает наибольшей проникающей способностью

Как измерить уровень радиации?

В обычной повседневной жизни предусмотрен только единственный способ определить уровень радиации – измерить ее специальным прибором – дозиметром. Это можно сделать самостоятельно или воспользоваться услугами специалистов. Дозиметры фиксируют ионизирующее излучение за определенный промежуток времени в дольных единицах – микро – или милизивертах в час.

Бытовые модификации приборов незаменимы для тех, кто стремится защитить себя от негативного влияния радиации. Дозиметром измеряют мощность дозы радиации в конкретном месте, где он находится или обследуют им определенные предметы – продукты питания, детские игрушки, строительные материалы и т.д. Полезно применять дозиметр:

  • для проверки радиационного фона в своем доме или квартире, особенно при покупке нового жилья,
  • для проверки территорий в походах, путешествиях по незнакомым удаленным местам,
  • для проверки земельного участка, предполагаемого для дачи, огорода,
  • для проверки грибов и ягод в лесу.

ОСГИ-Р Мультинуклидный

Опубликовано используйте горизонтальную прокрутку

Радионуклид * Вид распада Период полураспада, дни Энергия фотонов, кэВ Выход гамма-квантов на распад Номинальная активность, кБк ** МЭД, мкЗв/ч
88Y + EC 106,625 ± 0,024 898,036 ± 0,004 1836,052 ± 0,013 0,9390 ± 0,0023 0,9938 ± 0,0003 370 + 18
133Ba + EC 3848,7 ± 1,2 80,9979 ± 0,0011 276,3989 ± 0,0012 302,8508 ± 0,0005 356,0129 ± 0,0007 383,8485 ± 0,0012 0,329 ± 0,003 0,0716 ± 0,0005 0,1834 ± 0,0013 0,6205 ± 0,0019 0,0894 ± 0,0006 37 +
152Eu + EC 4941 ± 7 121,7817 ± 0,0003 344,2785 ± 0,0012 778,9045 ± 0,0024 964,072 ± 0,018 1085,837 ± 0,010 1112,076 ± 0,003 1408,013 ± 0,003 0,2841 ± 0,0013 0,2658 ± 0,0012 0,1296 ± 0,0006 0,1462 ± 0,0006 0,1013 ± 0,0006 0,1340 ± 0,0006 0,2085 ± 0,0009 37 +
241Am α 157850 ± 230 26,3446 ± 0,0002 59,5409 ± 0,0001 0,0240 ± 0,0003 0,3578 ± 0,0009 37
* Назначенный срок службы и межповерочный интервал мультинуклидного источника определяется наименьшим сроком и интервалом отдельных радионуклидов, входящих в состав источника. При поставке источников с большей активностью радионуклида по согласованию с заказчиком допускается уменьшение назначенного срока службы. ** По специальному заказу могут поставляться источники другой активности. Номинальное значение активности радионуклида в источнике в указанных пределах потребитель устанавливает при заказе источника. Отклонение активности от номинального значения не должно превышать ±20 %. МЭД — мощность эквивалентной дозы фотонного излучения на расстоянии 0,1 м. Доверительные границы погрешности результата измерений при доверительной вероятности р = 0,95: 7, 3 или 1,5 % — при паспортизации, аттестации в аккредитованных метрологических центрах или аттестации в качестве рабочих эталонов 0-го разряда, соответственно. Классификация ISO: С35242

Заказ

Как радиация получается[править]

  • От радиоактивных элементов или изотопов. Самое известное ее происхождение. Суть в том, что лишь ограниченное число конфигураций протонов и нейтронов в атомных ядрах стабильно. Все остальные неустойчивы и самопроизвольно распадаются, порождая радиацию. Это и называется радиоактивностью.
    • Интенсивность радиоактивного распада элементов имеет не постоянную, а экспоненциальную зависимость: у каждого радиоактивного ядра есть какая-то вероятность распасться, и чем больше атомов элемента, тем больше распадов в единицу времени. Поэтому не говорят о периоде полного распада какого-то элемента, а говорят о периоде полураспада

      Поправка. Радиоактивный распад ядра — понятие вероятностное, а не линейное, период полураспада — это такой промежуток времени, что вероятность распадения каждого ядра за него составляет 50 %. По прошествии этого периода «ровно половина» ядер останется нераспавшейся с такими же шансами, с какими из груды подброшенных монет ровно половина выпадет орлом. Однако когда атомов очень много, из большого количества радиоактивного вещества один за период полураспада распадётся количество ядер, очень близкое к 50 %.

      . То есть о периоде, за который от исходного количества атомов остаётся ровно половина. Если подождать ещё один период полураспада, то от оставшейся половины тоже останется половина, то есть четверть от исходного. После трёх периодов полураспада — одна восьмая. Чем меньше период полураспада, тем интенсивнее излучаемая радиация.

  • От ядерных взрывов и реакторов. Основной источник нейтронного излучения.
  • Из космоса. В космосе летает огромное количество разнообразных частиц. Тут полный зоопарк: и протоны, и электроны, и позитроны, и всякая вконец экзотическая шушера типа мюонов или мезонов. Правда, гаммы довольно мало, а нейтронов, к счастью, практически нет, потому что в свободном виде нейтрон неустойчив, имеет период полураспада в 10 минут и космические расстояния преодолевать просто не успевает

    А вот возле ярко-голубых звёзд радиация сильнее и жёстче, как и в двойных системах с нейтронной звездой, особенно если на нейтронную звезду падает вещество. Нейтронные звезды также интересны вот чем: они настолько горячи, что их тепловое излучение доходит до рентгеновского диапазона. Также до рентгена и гаммы накаляется вещество, падающее в чёрные дыры.

    . Образуется вся эта музыка в звёздных ядерных реакциях. Два основных вида: солнечный ветер (то есть лучи добра от ближайшей звезды — довольно низкоэнергетические, но их много) и собственно космические (долетающие из дальнего космоса, их мало, но они очень быстрые и проникающие). У планет, обладающих магнитным полем, например, Земли и Юпитера, есть радиационные пояса, в которых за счёт этого самого поля улавливаются и концентрируются частицы. Радиация там значительно сильнее, чем во всём остальном космосе.

Какой тип излучения наиболее опасный для людей

Самые жесткие кванты имеют рентгеновские волны и гамма-излучение. У них самые короткие волны, следовательно, больше коварства и опасности несут человеческому организму. Коварство их поясняется тем, что человек не чувствует их воздействия, но хорошо ощущает последствия. Даже в малых дозах облучения в организме происходят необратимые процессы и мутации.


Передача информации внутри человека носит электромагнитный характер. Если в организм проникает мощный луч облучения, то этот процесс нарушается. Человек вначале чувствует легкое недомогание, а позже патологические нарушения – гипертонию, аритмию, нарушения гормональной природы и другие.

Самая низкая способность проникновения у альфа-частиц, поэтому они считаются самыми, если так можно сказать, безопасными для человека. Бета-радиация намного мощнее и ее проникновение в организм более опасное. Наибольшей проникающей способностью обладает излучение гамма-частицами и рентгеновские лучи. Они способны проходить насквозь человека, защититься от них намного тяжелее, остановить их может только бетонная конструкция или свинцовый экран.

Источники радиации

Вообще, важно понимать, что источниками радиации являются не только радионуклиды. В частности, проходя ежегодное флюорографическое обследование или делая компьютерную томографию, мы подвергаемся действию рентгеновского излучения, которое (как и гамма-излучение) представляет собой поток квантов

Это означает, что два типа излучения, имея различное происхождение, в равной степени относятся к проникающей радиации. Иными словами, хотя в рентгеновской трубке не используются радионуклиды, она также является источником ионизирующего излучения.

Другим источником радиации, не связанным с естественными и искусственными радионуклидами, является космическое излучение. В открытом космосе это излучение обладает огромной энергией, но, проходя сквозь атмосферу, в значительной степени ослабляется и не оказывает значимого влияния на человека. По мере увеличения высоты возрастает и радиационный фон — поэтому люди, часто совершающие авиаперелеты, получают повышенную дозу радиации; еще большую дозу получают космонавты, выходящие в открытый космос.

Если сопоставить вклад различных источников в дозу, получаемую средним россиянином, то получится следующая картина: около 84,4% дозы он получит от природных источников, 15,3% — от медицинских источников, 0,3% — от техногенных источников (АЭС и других предприятий ядерной отрасли, сюда же включены последствия ядерных взрывов). В структуре природных источников можно выделить радон (50,9% от суммарной дозы), терригенное излучение, обусловленное радионуклидами, находящимися в земле (15,6%), космическое излучение (9,8%), и, наконец, внутреннее облучение за счет радионуклидов, находящихся в теле человека (калий-40, а также радионуклиды, поступающие с водой, воздухом, пищей) — 8,1%. Конечно, эти цифры условны и меняются в зависимости от региона, но общее соотношение всегда остается постоянным.

Причины радиоактивного загрязнения

Теперь поговорим о причинах радиоактивного загрязнения подробнее. Одна из основных – это ядерный взрыв, в результате которого происходит радиоактивное облучение активными радиоизотопами почвы, воды, пищи и т.п. Кроме этого, важнейшей причиной данного загрязнения является утечка радиоактивных элементов из реакторов. Во время перевозки либо хранения радиоактивных источников может произойти также утечка.

Среди важнейших радиоактивных источников следует назвать следующие:

  • добыча и обработка полезных ископаемых, содержащих радиоактивные частички;
  • использование каменного угля;
  • ядерная энергетика;
  • теплоэлектростанции;
  • локации, где проводятся испытания ядерного оружия;
  • ядерные взрывы по ошибке;
  • атомные корабли;
  • крушение спутников и космических кораблей;
  • некоторые виды боеприпасов;
  • отходы с радиоактивными элементами.

Что такое радиация

Для начала дадим определение, что такое радиация:

В процессе распада вещества или его синтеза происходит выброс элементов атома (протонов, нейтронов, электронов, фотонов), иначе можно сказать происходит излучение этих элементов. Подобное излучение называют — ионизирующее излучение или что чаще встречается радиоактивное излучение, или еще проще радиация. К ионизирующим излучениям относится так же рентгеновское и гамма излучение.

Радиация — это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации.

Ионизация — это процесс образования положительно или отрицательно заряженных ионов или свободных электронов из нейтрально заряженных атомов или молекул.

Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.

Виды радиации

Альфа, бета и нейтронное излучение — это излучения, состоящие из различных частиц атомов.

Гамма и рентгеновское излучение — это излучение энергии.

Какое излучение обладает наиболее сильной проникающей способностью

Высокорадиоактивный фон (смог) – продукт распада атомов с последующим изменением их ядер. Элементы, обладающие этой способностью, считаются высокорадиоактивными.

Каждое соединение наделено определенной способностью проникать в организм и вредить ему. Бывают природными и искусственными.

Наиболее сильной проникающей способностью обладает гамма-излучение – его частицы способны проходить сквозь тело человека, считаются очень опасными для здоровья человека.

Люди, работающие с ними, должны носить спецодежду, поскольку их влияние на здоровье может быть очень сильным – это зависит от вида излучения.

Разновидности и особенности излучений

Существует несколько разновидностей радиации. Людям по роду деятельности приходится сталкиваться с ней – кому каждый день, кому время от времени.

Альфа-радиация

Частицы гелия, несут отрицательный заряд, образуются в процессе распада тяжелых соединений природного происхождения – тория, радия, других веществ этой группы. Потоки с альфа-частичками не могут проникать сквозь твердые поверхности и жидкость. Человеку для защиты от них достаточно быть просто одетым.

Бета-лучи

Данный вид излучения располагает большей мощностью в сравнении с первым видом. Для защиты человеку потребуется плотный экран. Продуктом распада нескольких радиоактивных элементом выступает поток позитронов. Выделяются от электронов только зарядом – они носят положительный заряд. Если на них воздействует магнитное поле, отклоняются и двигаются в обратном направлении.

Гамма-радиация

Образуется в процессе распада ядер у многих радиоактивных соединений. Излучение обладает высокой проникающей способностью. Характеризуется жесткими электромагнитными волнами. Для защиты от их воздействия потребуются экраны, изготовленные из металлов, способных хорошо защитить человека от проникновения. Например, из свинца, бетона или водяные.

Рентгеновское излучение

Данные лучи обладают большой проникающей способностью. Может образовываться в рентгеновских трубках, электронных установках типа бетатрона и ему подобным. Характер действия этих радиоактивных потоков очень сильный, что и позволяет утверждать, что рентгеновский луч наделен способностью сильного проникновения, а значит – опасен.

Во многом похожий на вышеупомянутый, отличается только протяженностью и происхождением лучей. Рентгеновский поток имеет длиннее волну с низкой частотой излучения.

Ионизация здесь осуществляется в основном путем выбивания электронов. А за счет расхода собственной энергии вырабатывается в незначительном количестве.

Бесспорно, наибольшую проникающую способность имеют лучи этого излучения, особенно жесткие.

Какой тип излучения наиболее опасный для людей

Самые жесткие кванты имеют рентгеновские волны и гамма-излучение. У них самые короткие волны, следовательно, больше коварства и опасности несут человеческому организму. Коварство их поясняется тем, что человек не чувствует их воздействия, но хорошо ощущает последствия. Даже в малых дозах облучения в организме происходят необратимые процессы и мутации.

Передача информации внутри человека носит электромагнитный характер. Если в организм проникает мощный луч облучения, то этот процесс нарушается. Человек вначале чувствует легкое недомогание, а позже патологические нарушения – гипертонию, аритмию, нарушения гормональной природы и другие.

Самая низкая способность проникновения у альфа-частиц, поэтому они считаются самыми, если так можно сказать, безопасными для человека. Бета-радиация намного мощнее и ее проникновение в организм более опасное.

Они способны проходить насквозь человека, защититься от них намного тяжелее, остановить их может только бетонная конструкция или свинцовый экран.

Как определяется электромагнитный смог в жилой квартире

В каждой благоустроенной квартире имеется определенный уровень радиоактивных волн. Они исходят от бытовых электронных приборов и устройств.

Определяется электромагнитный смог специальным прибором – дозиметром. Хорошо, когда он имеется, если его нет, то выявить их можно и другим способом.

Для этого нужно включить все электрические приборы и обычным радиоприемником проверить уровень излучения каждого из них.

Если в нем возникают помехи, слышен писк, посторонние помехи и треск, то рядом находится источник смога. И чем ощутимее они, тем мощнее и сильнее электромагнитные излучения из него исходят. Источником смога могут служить стены квартиры. Любые действия жильцов в защиту собственного организма от их воздействия – залог здоровья.

Бета излучение

  • излучаются: электроны или позитроны
  • проникающая способность: средняя
  • облучение от источника: до 20 м
  • скорость излучения: 300 000 км/с
  • ионизация: от 40 до 150 пар ионов на 1 см пробега
  • биологическое действие радиации: среднее

Бета (β) излучение возникает при превращении одного элемента в другой, при этом процессы происходят в самом ядре атома вещества с изменением свойств протонов и нейтронов.

При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы.

Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением.

Бета радиация с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.

Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.

Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.

Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.

Источники радиации

Человеческий организм регулярно подвергается действию радиоактивного излучения. Приблизительно 80% ежегодно получаемого количества приходится на космические лучи. В воздухе, воде и почве содержатся 60 радиоактивных элементов, являющихся источниками естественной радиации. Основным природным источником излучения считается инертный газ радон, высвобождающийся из земли и горных пород. Радионуклиды также проникают в организм человека с пищей. Часть ионизирующего облучения, которому подвергаются люди, исходит от антропогенных источников, начиная от атомных генераторов электричества и ядерных реакторов до используемой для лечения и диагностики радиации. На сегодняшний день распространёнными искусственными источниками излучения являются:

  • медицинское оборудование (основной антропогенный источник радиации);
  • радиохимическая промышленность (добыча, обогащение ядерного топлива, переработка ядерных отходов и их восстановление);
  • радионуклиды, применяющиеся в сельском хозяйстве, лёгкой промышленности;
  • аварии на радиохимических предприятиях, ядерные взрывы, радиационные выбросы
  • строительные материалы.

Радиационное облучение по способу проникновения в организм делится на два типа: внутреннее и внешнее. Последнее характерно для распылённых в воздухе радионуклидов (аэрозоль, пыль). Они попадают на кожу или одежду. В таком случае источники радиации можно удалить, смыв их. Внешнее же облучение вызывает ожоги слизистых оболочек и кожных покровов. При внутреннем типе радионуклид попадает в кровоток, например, введением в вену или через раны, и удаляется путём экскреции или с помощью терапии. Такое облучение провоцирует злокачественные опухоли.

Радиоактивный фон существенно зависит от географического положения – в некоторых регионах уровень радиации может превышать средний в сотни раз.

Чем вредно ионизирующее (рентгеновское) облучение?

По данным актуальных исследований библиотек РИНЦ и PubMed, а также в соответствии с действующими нормами радиационной безопасности населения РФ (НРБ), не рекомендуется облучается более чем на 15-20 мЗв в год. На новых КТ-аппаратах (МСКТ), в зависимости от исследуемых зон, это около 5-8 сканирований.
На аппаратах старого образца из-за меньшего количества чувствительных датчиков, срезов и большего времени сканирования лучевая нагрузка выше.

После КТ радиоактивные элементы не сохраняются и не накапливаются в организме человека. X-ray лучи сканируют только зону интереса, и это длится 30-45 секунд.

Организм человека содержит необходимые ему химические элементы — водород, железо, калий и др. Распад этих элементов — тоже в своем роде является радиоактивным процессом, который происходит ежесекундно, на протяжении всей жизни человека. Некоторое количество радиации человек получает из атмосферы, воды, от природных радионуклидов. Это называется естественным радиационным фоном.

Доза радиации, полученная пациентом в рамках медицинских обследований не велика — это справедливо как для рентгена, так и для КТ. Однако организм каждого человека по-разному реагирует на воздействие x-ray излучения: если одни пациенты сравнительно легко переносят лучевую нагрузку, равную 50 мЗв, то для других аналогичной по воздействию будет нагрузка 15 мЗв.

Поскольку норма относительна, а порог, при котором негативного воздействия гарантированно не произойдет, отсутствует, принято считать, все виды исследований с применением ионизирующего излучения потенциально вредны. Организм взрослого человека более резистентен к радиации, а дети более чувствительны. Однако у некоторых пациентов имеются отягчающие факторы в анамнезе или индивидуальные особенности организма.

Например, по одним данным считается, что у годовалого ребенка, которому проводится КТ брюшной полости, пожизненный риск онкологии возрастает на 0,18%. Однако если ту же процедуру проходит взрослый или пожилой человек, то этот риск будет существенно ниже. Считается, что регулярное дозированное рентгеновское облучение даже полезно, поскольку организм адаптируется к лучевой нагрузке, и его защитные силы возрастают.

По данным другого исследования, проводимого на когортной группе детей в период с 1996 по 2010 гг. в США, «ежегодно по стране 4 миллиона детских компьютерных томографов головы, живота / таза, грудной клетки или позвоночника вызовут 4870 случаев рака. Этот процент уменьшится, если сократить количество исследований, доза облучения в которых превышает 20 мВз».*

*“The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk”, 2013 (Diana L Miglioretti , Eric Johnson, Andrew Williams, Robert T Greenlee)

Избыток радиации может стать спусковым механизмом для онкологии, дегенеративных нейрозаболеваний (болезнь Альцгеймера, болезнь Паркинсона). Беременным женщинам (даже если факт беременности еще не подтвержден, но существует вероятность вынашивания плода на данный момент) противопоказано дополнительное радиационное воздействие, то есть делать КТ в этот период можно только по жизненным показаниям, из-за риска тератогенного воздействия ионизирующего излучения на формирующийся плод.

Большинство медиков сегодня склоняются к мнению, что польза целесообразной компьютерной томографии несомненно превышает вред, однако уровень лучевого воздействия на организм, даже с целью медицинской диагностики, следует сводить к минимуму. Например, для наблюдения изменений легочных лимфоузлов или камней в почках диагностические изображения могут быть получены при дозе на 50-75 % ниже, чем при использовании стандартных протоколов. То есть в некоторых случаях могут быть применены низкодозные КТ-протоколы.

Области применения гамма-лучей

Даже смертоносным лучам пытливые умы учёных нашли сферы применения. В настоящее время гамма-излучение используется в различных отраслях промышленности, идут на благо науки, а также успешно применяются в различных медицинских приборах.

Для лечения онкологических новообразований гамма-лучи незаменимы, так как способны разрушить аномальные клетки, и прекратить их стремительное деление. Иногда остановить аномальный рост раковых клеток невозможно ничем, тогда на помощь приходит гамма-излучение, где клетки уничтожаются полностью.

Применяется гамма ионизирующее излучение для уничтожения патогенной микрофлоры и различных потенциально опасных загрязнений. В радиоактивных лучах стерилизуют медицинские инструменты и приборы. Также данный вид радиации применяется для обеззараживания некоторых продуктов.

Гамма-лучами просвечивают различные цельнометаллические изделия для космической и других отраслей промышленности с целью обнаружения скрытых дефектов. В тех областях производства, где необходим предельный контроль за качеством изделий, этот вид проверки просто незаменим.

При помощи гамма-лучей учёные измеряют глубину бурения, получают данные о возможности залегания различных пород. Гамма-лучи могут быть использованы и в селекции. Строго дозированным потоком облучаются определённые отобранные растения, чтобы получить нужные мутации в их геноме. Таким способом селекционеры получают новые породы растений с нужными им свойствами.

С помощью гамма-потока определяются скорости космических аппаратов и искусственных спутников. Посылая лучи в космическое пространство, учёные могут определить расстояние и смоделировать путь космического аппарата.

Как уменьшить опасность избытка излучения в квартире

И всё-таки какое излучение является самым опасным для человека?

Бесспорно, что гамма-излучение весьма «недружественно» относится к человеческому организму. Но и более низкочастотные электромагнитные волны способны причинить вред здоровью. Аварийное или плановое отключение электроэнергии дезорганизует наш быт и привычную работу. Вся электронная «начинка» наших квартир становится бесполезной, а мы, лишившись интернета, сотовой связи, телевидения оказываемся отрезанными от мира.

Весь арсенал электробытовых приборов в той или иной мере является источником электромагнитных излучений, снижающий иммунитет и ухудшающий функционирование эндокринной системы.

Была установлена связь между удалённостью места проживания человека от линий высоковольтных передач и возникновением злокачественных опухолей. В том числе и детской лейкемии. Эти печальные факты можно продолжать до бесконечности. Важнее выработать определённые навыки в их эксплуатации:

  • при работе большинства бытовых электроприборов старайтесь выдерживать расстояние от 1 до 1,5 метра;
  • располагайте их в разных частях квартиры;
  • помните, что электробритва, безобидный блендер, фен, электрическая зубная щётка — создают достаточно сильное электромагнитное поле, опасное своей близостью к голове.